

Electric vehicle infrastructure – A new mindset

February 2021

Speakers

Laurie Giammona SVP and Chief Customer Officer, Pacfic Gas & Electric Company

Bill Loewenthal SVP, Product Chargepoint, Inc.

Kim Winslow Sr. Director, Energy Solutions Evergy

Akshay Singh Automotive and Smart Mobility Partner, Strategy&, PwC

akshay.singh@pwc.com

Nicolas Hodson Consultant, Retired Partner at PwC nicholashodson8@gmail.com

Hugh Le Power & Utilities Director, Strategy&, PwC hugh.le@pwc.com

Electric vehicle charging infrastructure – A new mindset?

Electric vehicle (EV) adoption is driven by vehicle economics and the availability of charging infrastructure

Electric vehicle infrastructure - A new mindset

Once TCO parity is reached, EVs could become up to 65% of new vehicle market share

Global EV penetration

Powertrain Electrification Summary

- The US ICE/BEV tipping point (i.e., TCO parity) could occur by 2024 - 2026
- US will have 12%-15% EV penetration of new vehicles by 2030...
- ...while there will be significantly higher penetration in EU and China in that timeframe
- In the US, auto OEMs are introducing over 70 EV nameplates by 2027

Notes: Global penetration calculated using China EU and U.S. EV penetration; 3-year total cost of ownership; Incentives phase out in 2020+ Source: Battery expert Interviews, Strategy& analysis

External estimates suggest significant EV infrastructure investment is needed just to meet 2025 projections

1. International Council on Clean Transportation – EV Charging Infrastructure Gap, 2019 Sources: International Council on Clean Transportation (ICCT)

Charging infrastructure technology trades off charge time, power/Range, and cost

T						
	At Home" Residential Charging					
	~80% of the charging		"Away from Home" Commercial Charging			
	Level 1	Level 2	Level 3 ¹	Level 4 ¹		
Use Cases	Overnight charging	At work, overnight	Short stops, highway corridors	Short stops, highway corridors		
Power Level	120 Volts-AC	200-240 Volts-AC	200-500 Volts-DC	480+ Volts-DC		
Charge Time ²	~20 hours	~5-6 hours	~30 minutes	~20 mins		
Range/Hour	~5 miles	~25 miles	~100+ miles	100+ miles		
US Plug Types³	NEMA 5-15 (Standard electrical outlet)	SAE J1772 (i.e., 'J-Plug')	SAE J1772 Combo (CCS – Combo Charging System), CHAdeMO ⁴	Dual SAE J1772 Combo CCS1, single CHAdeMO, single SAE J1772 Combo CCS1		
Capital Investment ⁵	No investment needed	\$2,000 - \$7,500	~\$75,000	~\$125,000		
Annual Operating Cost/charger	-	~\$4000	~\$13,000	~\$28000		

Electric vehicle infrastructure – A new mindset Strategy&
1) Not all vehicles are compatible with Level 3 or 4 charging; 2) Estimated charging time for an example BEV from empty to full; 3) Excludes some suppliers that makes adapters to fit either SAE or CHAdeMO plugs; 4) CHAdeMO stands for 'Charge de Move', or move using charge; 5) Includes est. cost of EVSE hardware, site preparation, interconnection, etc. Sources: Utility Dive, NREL, Idaho National Laboratory, Semaconnect, ClipperCreek, Charge Hub, Strategy& analysis

EV charging stations may reach minimum efficient scale at 4-6 charger points across all level types

Capital expenditures per charger by level and station format (\$ per charger)

Capex / Charger @ 6 Chargers per Station = ~\$6,000 Capex / KW = ~\$1,200 Capex / Charger @ 6 Chargers per Station = ~\$49,000 Capex / KW = ~\$600

Capex / Charger @ 6 Chargers per Station = ~\$96,000 Capex / KW = ~\$800

Expected utilization will likely be the critical factor in breakeven pricing for positive charging economics

Charging Economics: Breakeven Price by Charger Type¹ 4 Charger Configuration for Various Utilization Levels

1) All-in breakeven price is selling price requested to earn a 10% return on capital invested with a wholesale power cost of \$0.16 per Kwh Sources: International Council of Clean Transportation, EV expert interviews, Strategy& analysis

A broad range of players are investing in EV infrastructure using a variety of approaches

EV infrastructure business models are taking shape from a variety of public or private partnerships

Example EVSE Business Models

Standalone (Own and Operate)	 EVSE company provides charging infrastructure and services Costs are passed to consumers in charging rates 	EVSE kWh \$/kWh (unsubsidized)	Consumer
Retail Host – Owned Channels	 Retail host utilizing EV charging to promote increased foot traffic Subsidize EVSE investment and monetize investment via other means 	EVSE KWh \$/kWh (subsidized)	Consumer Retail Partner
Auto OEM Subsidization	 Auto OEMs help finance EVSE investment CAPEX Price of EV infrastructure recovered in EV car sales price 	EVSE kWh \$/kWh (subsidized)	Consumer EV Vehicle price
Utility Partnership	 Incentivize EV adoption and EVSE charging infrastructure deployment Potential to pass investment costs to customers via regulated rates 	EVSE kWh \$/kWh (subsidized)	Consumer Electric Service Electric bill
Government Run	 Subsidize EVSE investment with tax dollars or government debt Useful for segments that would not otherwise attract investment 	EVSE kWh \$/kWh (subsidized)	Consumer Infrastructure Taxes/Debt

Panel discussion

Speakers

Laurie Giammona SVP and Chief Customer Officer, Pacfic Gas & Electric Company

Bill Loewenthal SVP, Product Chargepoint, Inc.

Kim Winslow Sr. Director, Energy Solutions Evergy

Akshay Singh Automotive and Smart Mobility Partner, Strategy&, PwC akshay.singh@pwc.com

Nicolas Hodson Consultant, Retired Partner at PwC nicholashodson8@gmail.com

Hugh Le Power & Utilities Director, Strategy&, PwC hugh.le@pwc.com

Thank you

strategyand.pwc.com

© 2021 PwC. All rights reserved.

PwC refers to the PwC network and/or one or more of its member firms, each of which is a separate legal entity. Please see pwc.com/structure for further details. **Disclaimer:** This content is general information purposes only, and should not be used as a substitute for consultation with professional advisors.