2030: At least 1 in 5 vehicles must be EV What will it take?

16 September 2020

Britta K. Gross RMI, Managing Director

Climate Target: >50M EVs by 2030 (currently: 1.5mil EVs)

How might EVs and DC Fast-Chargers be distributed? (currently: 5,000 DCFC)

Near-term action is critical as States will be very challenged to support this scale of EV and EV Charging Infrastructure growth if we delay (need to install 30,000 DCFC/yr)

Sources: FHWA 2017 Vehicle Registration Data; NREL (88% home charging) and EEI (78% home charging) Infrastructure Analysis, with RMI scaling

EV Market Barriers

1. Battery and EV Cost/Affordability

- #1 automaker priority is to get cost out of these technologies
 - EVs (and EVSE) are broadly unprofitable today

2. Lack of Charging Infrastructure

 Address both the "Perception" (public charging) and the "Reality" (home and workplace charging)

3. Build EV Demand

• Drive Consumer and Fleet Demand through Infrastructure, Awareness and Policy

Despite significant (85%) battery price reductions since 2010, additional cost improvements are needed to achieve parity with conventional vehicles.

Battery Pack Price (real 2018 \$/kWh)

Source: BNEF - Survey data (volume weighted)

2018 Top Selling Body Style by State

Crossovers (CUVs) and SUVs make up the majority of new car sales in most states, creating a challenge for EV Manufacturers: larger batteries vs. consumer cost sensitivity

EV Model Availability in North America: 2008-2019

Source: Bloomberg NEF (2020) in partnership with the Business Council for Sustainable Energy

CUV = Crossover Utility Vehicle (or Compact SUV)

Some EV Models Expected 2020-2023

Audi Q4 e-tron (2021)

BMW iX3 (2022)

Mercedes-Benz EQC (2021)

BMW iNext (2023)

Porsche Macan EV (2023) Ford Mustang Mach-E (Late 2020)

Volvo XC40 Recharge (2020)

VW ID 4 (2021)

Tesla Cybertruck

Mazda MX-30 (2021)

Nissan Ariya (2021)

Ford F-150 Electric (2021) Mercedes-Benz G-Class Electric (2022)

Bollinger B1

(2021)

Lordstown Endurance (2021)

GMC Hummer EV SUV (2021)

GMC Hummer

EV SUT (2022)

₩W I.D. Buzz (2022)

Rivian R1T (2021)

EV Charging Infrastructure Growth (2015-2020)

Good progress has been made in building EV charging station infrastructure, but it is nowhere near sufficient to actually <u>drive</u> EV adoption (to achieve the EV scale required by 2030)

DC = Direct Current; SAE = Society of Automotive Engineers (ie. Industry standard-setting body)

https://afdc.energy.gov/stations/#/analyze

3 Areas of Key Infrastructure Investment

(VW Settlement)

Electrify America

- Compelling "storytelling"
- Part of a planned \$2Bil investment (439 sites operating; 1,939 EVSE)

- 47 States to invest in EV charging
- \$316 mil investment

- Utility engagement is key
- \$1.5B approved; \$1.4B pending (2,500 DC + 50,000 L2)

Only 13% of EV charging investment to date has come from the private sector, due to the challenging business case; utility engagement is imperative

Source: AFDC (10/15/2020); Atlas Policy Data; RMI Analysis

We're Losing Time

Current charging **infrastructure debates are over short-term** issues:

- cost-shifting from EV drivers to non-EV drivers
- cost recovery from utility investments in EV charging infrastructure
- regulator reluctance to let utilities invest
- utility reluctance to bring a rate case before skeptical regulators
- distribution of costs among market participants

... and thus we are woefully behind on building the home, workplace, and public charging networks we urgently require

Why Electrify?

Vehicle Benefits

- **Better** driving experience (acceleration, handling)
- Quiet, less stress (engine vibration)
- Safe and convenient home "fueling" (~ a cell phone)
- Fuel **savings** (\$12k/EV over 14 yr life)
- Electricity price **stability**
- Clean

Beyond-Vehicle Benefits

- US competitiveness and jobs
- Electricity price stability (fleet operators)
- State economic growth: >90% of electricity sales
- revenue stays in the state (\$7,000/EV over 14 yrs)
- Grid Efficiency: new loads (and fixed transmission
 - costs) benefit all ratepayers (\$3,500/EV over 14 yrs)
- Increased use of grid renewables
- Clean air and health
- Carbon reduction and climate

EVs benefit not only EV drivers, but also all ratepayers, power generators, charging providers, and the states themselves

Policy May Play the Most Important Role in EV Adoption # of Key EV-enabling Policies by State

Purchasing an EV has to be a more attractive option than buying an ICE – have these policies achieved this?

EV-enabling Policy (# of states)

- Building Codes $(3 \rightarrow 5)$
- Charging Incentive (21 \rightarrow 29)
- Charging Service Provider (20 \rightarrow 27)
- EV Charging Rate (17 \rightarrow 18)
- HOV Exemption (11)
- MD/HD Incentive (new --> 9)
- NGO Incentive (2)
- REV West Plan (8)
- BEV Incentives (12 \rightarrow 17)
- State Fleet Incentive $(3 \rightarrow 6))$
- PHEV Incentive (12 \rightarrow 15)
- Transportation Elect Plan (24)
- Transportation Elect Target (14)
- Utility Enabling Legislation (4 \rightarrow 8)
- Utility Filing (30 \rightarrow 33)
- Utility Incentive (20)
- Utility Own/Operate (11 \rightarrow 12)
- VGI Strategy (new \rightarrow 3)
- ZEV Program (12)

Policy May Play the Most Important Role in EV Adoption

CAPITAL STOCK TURNOVER

What It Will Take to Achieve >50M EVs by 2030?

• Acknowledge the full value of transportation electrification

• Benefits to ratepayers, states, US competitiveness, a cleaner/resilient grid, and societal goals (health, air quality, equity and climate impact)

• More EV charging infrastructure!

- National EV strategy with aligned infrastructure plans for home, work, public charging
- Utility-investment and engagement (all 3,200 utilities)
- Ensure that installed EV chargers maximize the public benefits (e.g. renewables, off-peak charging)

Drive demand certainty and EV awareness

- Government, corporate, and commercial fleet commitments
- Sustained financial and non-financial incentives and perks

"Just" 1 in 5 of us need to switch to an EV within the next 10 years:

- The average transaction price for a new vehicle in 2019 was \$38,948
- 60% of Americans live in single-family homes
- 66% have more than 2 vehicles in the household
- 80% of Americans commute less than 40 miles/day to and from work

This is Doable!

RMI's Recent Mobility Thought leadership

